- Các nhà nghiên cứu tại Stanford đã huấn luyện máy tính tự học sinh học từ dữ liệu thô về hàng triệu tế bào và thành phần hóa học, di truyền của chúng.
- Chỉ trong 6 tuần, máy tính đã tự khám phá ra tế bào Norn - loại tế bào hiếm gặp trong thận tạo ra hormone erythropoietin khi oxy xuống thấp. Con người mất 134 năm để phát hiện ra tế bào này.
- Các mô hình nền tảng AI mới đang hướng tới những nguyên lý cơ bản của sinh học, khám phá cách gen hoạt động và tế bào phát triển.
- Mô hình GeneFormer dự đoán việc tắt gen TEAD4 trong tế bào tim sẽ làm suy yếu nhịp đập. Thử nghiệm trên tế bào thực cho kết quả tương tự.
- Mô hình Universal Cell Embedding (U.C.E.) của Stanford học cách phân loại hơn 1.000 loại tế bào dựa trên hoạt động gen và khám phá lại sinh học phát triển.
- Các mô hình nền tảng đôi khi mắc lỗi và cần nhiều dữ liệu hơn để cải thiện. Các nhà khoa học hy vọng tạo ra mô hình toán học hoàn chỉnh của tế bào.
- Việc ánh xạ những gì khả thi và không khả thi để duy trì sự sống có thể giúp tạo ra các tế bào mới với khả năng đặc biệt.
- Các rủi ro mới nảy sinh như vũ khí sinh học và vi phạm quyền riêng tư cần được kiểm soát.
📌 Các mô hình AI nền tảng đang tự khám phá ra những hiểu biết sâu sắc về sinh học chỉ từ dữ liệu thô, như phát hiện tế bào Norn trong 6 tuần, dự đoán tác động của việc tắt gen lên tế bào tim. Chúng hứa hẹn tạo ra bản đồ toàn diện về tế bào, thậm chí tạo ra tế bào mới với khả năng đặc biệt, nhưng cũng đặt ra những rủi ro cần kiểm soát.
Citations:
[1] https://www.nytimes.com/2024/03/10/science/ai-learning-biology.html