Các chiến lược tiết kiệm chi phí trong việc huấn luyện mô hình AI cho doanh nghiệp nhỏ

• Huấn luyện mô hình AI đòi hỏi chi phí khổng lồ, chủ yếu do phần cứng đắt đỏ như GPU. Ví dụ, việc huấn luyện LLaMA 2 70B cần ít nhất 10^24 phép tính dấu phẩy động.

• Các công ty lớn như Microsoft, Meta, Nvidia đang phát triển chip AI tùy chỉnh để tối ưu hóa phần cứng. Tuy nhiên, cách tiếp cận này chỉ phù hợp với các "đại gia" có nguồn lực tài chính dồi dào.

• Đối với doanh nghiệp nhỏ và startup, các giải pháp phần mềm sáng tạo là lựa chọn khả thi hơn để tối ưu hóa quá trình huấn luyện và giảm chi phí.

Mixed precision training kết hợp các phép toán độ chính xác thấp b/float16 với float32 tiêu chuẩn, giúp cải thiện tốc độ xử lý và sử dụng bộ nhớ. Kỹ thuật này có thể cải thiện thời gian chạy lên đến 6 lần trên GPU và 2-3 lần trên TPU.

Activation checkpointing lưu trữ một tập con các giá trị thiết yếu và chỉ tính toán lại phần còn lại khi cần thiết. Phương pháp này có thể giảm sử dụng bộ nhớ tới 70%, mặc dù kéo dài thời gian huấn luyện 15-25%.

Multi-GPU training phân phối quá trình huấn luyện trên nhiều GPU cùng lúc. Các công cụ như DeepSpeed, FSDP và YaFSDP có thể tăng tốc độ huấn luyện lên đến 10 lần so với phương pháp truyền thống.

Các framework mã nguồn mở như Nvidia's APEX và PyTorch của Meta AI hỗ trợ nhiều kỹ thuật tối ưu hóa, giúp việc tích hợp vào quy trình huấn luyện trở nên dễ dàng hơn.

• Bằng cách áp dụng các chiến lược này, ngay cả các doanh nghiệp có nguồn lực hạn chế cũng có thể tham gia vào lĩnh vực AI mà không cần đầu tư lớn vào phần cứng đắt đỏ.

📌 Các kỹ thuật phần mềm như mixed precision training, activation checkpointing và multi-GPU training giúp doanh nghiệp nhỏ tiết kiệm chi phí huấn luyện AI đến 70%. Những công cụ này tăng hiệu quả tính toán, giảm thời gian chạy và cho phép huấn luyện mô hình lớn hơn trên phần cứng hiện có.

 

https://venturebeat.com/ai/the-economics-of-gpus-how-to-train-your-ai-model-without-going-broke/

Thảo luận

© Sóng AI - Tóm tắt tin, bài trí tuệ nhân tạo