Llama-3.1-Storm-8B: Mô hình ngôn ngữ 8B tham số cải tiến với kỹ thuật tự lựa chọn dữ liệu và kết hợp mô hình

• Llama-3.1-Storm-8B là mô hình ngôn ngữ 8B tham số được cải tiến từ Llama-3.1-8B-Instruct, nhằm nâng cao khả năng hội thoại và gọi hàm.

Mô hình này vượt trội so với Llama-3.1-8B-Instruct và Hermes-3-Llama-3.1-8B trên nhiều bài kiểm tra đa dạng như làm theo hướng dẫn, trả lời câu hỏi dựa trên kiến thức, lập luận, tạo câu trả lời trung thực và gọi hàm.

• Quy trình phát triển Llama-3.1-Storm-8B gồm 3 bước chính:
1. Tự lựa chọn dữ liệu: Chọn khoảng 1 triệu mẫu chất lượng cao từ 2,8 triệu mẫu nguồn mở, dựa trên giá trị giáo dục và mức độ khó.
2. Tinh chỉnh có mục tiêu: Sử dụng phương pháp Spectrum để tinh chỉnh có chọn lọc 50% các lớp của mô hình.
3. Kết hợp mô hình: Kết hợp mô hình đã tinh chỉnh với mô hình Llama-Spark bằng phương pháp SLERP.

• Llama-3.1-Storm-8B cải thiện đáng kể so với Llama-3.1-8B-Instruct trên nhiều chỉ số:
- Làm theo hướng dẫn (IFEval): +3,93%
- Trả lời câu hỏi dựa trên kiến thức (GPQA): +7,21%
- Lập luận (ARC-C): +3,92%
- Giảm ảo tưởng (TruthfulQA): +9%
- Khả năng gọi hàm (BFCL): +7,92%

• Mô hình có sẵn ở các định dạng BF16, FP8 và GGUF, có thể dễ dàng tích hợp vào các dự án sử dụng thư viện Transformers và vLLM.

• Nhóm nghiên cứu dự định áp dụng phương pháp này để cải thiện các mô hình ngôn ngữ nhỏ khác như Gemma-2, Phi-3 và Qwen2.

• Mặc dù không trải qua quá trình căn chỉnh rõ ràng, Llama-3.1-Storm-8B có thể vẫn giữ một số đặc tính căn chỉnh từ mô hình gốc Llama-3.1-8B-Instruct.

📌 Llama-3.1-Storm-8B là mô hình ngôn ngữ 8B tham số vượt trội, cải thiện 3,93% - 9% trên nhiều bài kiểm tra so với Llama-3.1-8B-Instruct. Kỹ thuật tự lựa chọn dữ liệu và kết hợp mô hình giúp nâng cao hiệu suất đáng kể với tài nguyên hạn chế.

 

https://huggingface.co/blog/akjindal53244/llama31-storm8b

Thảo luận

© Sóng AI - Tóm tắt tin, bài trí tuệ nhân tạo