MAP-Neo: mô hình ngôn ngữ lớn song ngữ đầu tiên hoàn toàn minh bạch và mã nguồn mở, đạt hiệu suất vượt trội ngang ngửa các mô hình thương mại hàng đầu

- MAP-Neo là mô hình ngôn ngữ song ngữ lớn với 7 tỷ tham số, được huấn luyện trên 4.5 nghìn tỷ token chất lượng cao, do các nhà nghiên cứu từ M-A-P, Đại học Waterloo, Viện nghiên cứu AI Vũ Hán và 01.AI phát triển. Đây là mô hình LLM song ngữ đầu tiên được công bố hoàn toàn mã nguồn mở và minh bạch.

- MAP-Neo đạt hiệu suất tương đương hoặc vượt trội so với các mô hình LLM thương mại hàng đầu hiện nay như GPT, Gemini, Claude trong nhiều tác vụ như hiểu ngôn ngữ, lập luận, tri thức và lập trình.

- Tất cả các chi tiết cần thiết để tái tạo lại MAP-Neo đều được công bố đầy đủ, bao gồm: tập dữ liệu tiền huấn luyện đã qua làm sạch với 4.5 nghìn tỷ token, pipeline làm sạch dữ liệu, các checkpoint mô hình trung gian và cuối cùng, cùng với framework huấn luyện/đánh giá đã được tối ưu hóa.

- So với các mô hình mã nguồn mở khác như Mistral, LLaMA3, Pythia, Amber và OLMo, MAP-Neo tích hợp nhiều cải tiến vượt trội như các checkpoint trung gian, quy trình làm sạch dữ liệu toàn diện, tập dữ liệu tiền huấn luyện có thể truy cập dễ dàng và mã tái tạo đầy đủ.

- Trong các bài kiểm tra chuẩn về hiểu ngôn ngữ tiếng Trung và tiếng Anh (C-EVAL, MMLU), khả năng toán học (GSM8K) và lập trình (HumanEval), MAP-Neo đạt điểm số rất cao, vượt qua nhiều mô hình khác. Điều này cho thấy MAP-Neo thiết lập một tiêu chuẩn mới về tính minh bạch và hiệu suất cho các mô hình ngôn ngữ lớn.

- Bộ mã hóa (tokenizer) của MAP-Neo được huấn luyện bằng phương pháp mã hóa cặp byte (BPE) thông qua công cụ SentencePiece trên 50 tỷ mẫu văn bản, với độ dài tối đa 64,000 token. Kích thước từ vựng là 64,000 từ với độ dài tối đa của mỗi đoạn văn bản là 16 token. Các con số được mã hóa thành từng chữ số riêng lẻ.

- Việc ưu tiên dữ liệu mã nguồn, toán học và học thuật trong quá trình tiền huấn luyện giúp MAP-Neo đạt hiệu suất cao trong các tác vụ liên quan. Hiệu suất của bộ mã hóa có sự khác biệt tùy thuộc vào ngôn ngữ và nguồn dữ liệu.

- Việc công bố đầy đủ mô hình MAP-Neo mang lại nhiều lợi ích như giảm chi phí triển khai, đặc biệt cho các LLM tiếng Trung. Điều này thúc đẩy sự bao quát trong đổi mới AI, giảm sự thống trị của các LLM tiếng Anh và giải quyết vấn đề "chủ nghĩa thực dân dữ liệu" do các công ty lớn chi phối.

 

📌 MAP-Neo đánh dấu một cột mốc quan trọng với tư cách là mô hình ngôn ngữ lớn song ngữ đầu tiên được công bố hoàn toàn mã nguồn mở và minh bạch. Với 7 tỷ tham số, MAP-Neo được huấn luyện trên 4.5 nghìn tỷ token dữ liệu chất lượng cao, đạt hiệu suất vượt trội ngang ngửa với các mô hình thương mại hàng đầu trong nhiều tác vụ quan trọng. Tính minh bạch và khả năng tái tạo đầy đủ của MAP-Neo mở ra tiềm năng to lớn cho cộng đồng nghiên cứu AI toàn cầu, thúc đẩy sự bao quát và giảm sự phụ thuộc vào các mô hình đóng, đặc biệt có ý nghĩa với các quốc gia và khu vực không sử dụng tiếng Anh.

 

https://www.marktechpost.com/2024/05/31/map-neo-a-fully-open-source-and-transparent-bilingual-llm-suite-that-achieves-superior-performance-to-close-the-gap-with-closed-source-models/

Thảo luận

© Sóng AI - Tóm tắt tin, bài trí tuệ nhân tạo