- Xử lý ngôn ngữ tự nhiên (NLP) là một phần không thể thiếu của trí tuệ nhân tạo, cho phép giao tiếp liền mạch giữa con người và máy tính. Lĩnh vực liên ngành này kết hợp ngôn ngữ học, khoa học máy tính và toán học, tạo điều kiện cho dịch tự động, phân loại văn bản và phân tích cảm xúc.
- Các phương pháp NLP truyền thống như CNN, RNN và LSTM đã phát triển với kiến trúc transformer và các mô hình ngôn ngữ lớn (LLM) như họ GPT và BERT, mang lại những tiến bộ đáng kể trong lĩnh vực này. Tuy nhiên, LLM phải đối mặt với những thách thức, bao gồm ảo giác và nhu cầu kiến thức chuyên biệt.
- Các nhà nghiên cứu đã khảo sát các phương pháp tích hợp tăng cường truy xuất vào mô hình ngôn ngữ. Mô hình ngôn ngữ tăng cường truy xuất (RALM), chẳng hạn như Tạo sinh được tăng cường bởi truy xuất dữ liệu ngoài (RAG) và Hiểu biết được tăng cường bởi truy xuất dữ liệu ngoài (RAU), nâng cao các tác vụ NLP bằng cách kết hợp truy xuất thông tin bên ngoài để tinh chỉnh đầu ra.
- Việc nâng cao RALM liên quan đến cải thiện bộ truy xuất, mô hình ngôn ngữ và kiến trúc tổng thể. Các cải tiến bộ truy xuất tập trung vào kiểm soát chất lượng và tối ưu hóa thời gian để đảm bảo các tài liệu liên quan được truy xuất và sử dụng đúng cách. Các cải tiến mô hình ngôn ngữ bao gồm xử lý truy xuất trước khi tạo và tối ưu hóa mô hình cấu trúc, trong khi các cải tiến RALM tổng thể liên quan đến đào tạo đầu cuối và các mô-đun trung gian.
- RAG và RAU là các RALM chuyên biệt được thiết kế để tạo sinh và hiểu ngôn ngữ tự nhiên. RAG tập trung vào việc nâng cao khả năng tạo ra các tác vụ ngôn ngữ tự nhiên như tóm tắt văn bản và dịch máy, trong khi RAU được điều chỉnh để hiểu các tác vụ như trả lời câu hỏi và lập luận thông thường.
📌 RALM, bao gồm RAG và RAU, đại diện cho một bước tiến đáng kể trong NLP bằng cách kết hợp truy xuất dữ liệu bên ngoài với các mô hình ngôn ngữ lớn để nâng cao hiệu suất trên nhiều tác vụ khác nhau. Các nhà nghiên cứu đã tinh chỉnh mô hình tăng cường truy xuất, tối ưu hóa tương tác giữa bộ truy xuất và mô hình ngôn ngữ, mở rộng tiềm năng của RALM trong tạo sinh và hiểu ngôn ngữ tự nhiên.
Citations:
[1] https://www.marktechpost.com/2024/05/03/a-survey-of-rag-and-rau-advancing-natural-language-processing-with-retrieval-augmented-language-models/