• Một nghiên cứu gần đây đã phân tích toàn diện vai trò của các mô hình ngôn ngữ nhỏ (SLM) trong lĩnh vực AI hiện đại, tập trung vào khả năng, ứng dụng và lợi thế tiềm năng của chúng so với các mô hình lớn hơn.
• Nghiên cứu nhấn mạnh tầm quan trọng của SLM trong các lĩnh vực đòi hỏi hiệu quả và khả năng diễn giải, đồng thời thảo luận về sự phù hợp của chúng trong các tác vụ cụ thể mà các mô hình lớn có thể không thực tế.
• Khi các mô hình ngôn ngữ lớn (LLM) mở rộng quy mô, chi phí tính toán và nhu cầu năng lượng của chúng tăng theo cấp số nhân, khiến chúng ít tiếp cận hơn đối với các nhà nghiên cứu và doanh nghiệp có nguồn lực hạn chế.
• Trong khi đó, các mô hình nhỏ (SM) vẫn được sử dụng rộng rãi trong các ứng dụng thực tế nhưng thường bị đánh giá thấp. Nghiên cứu này khám phá mối quan hệ giữa LLM và SLM, xem xét cách chúng có thể hợp tác và cạnh tranh, nhằm cung cấp thông tin chi tiết để tối ưu hóa hiệu quả tính toán trong các hệ thống AI.
• Các kỹ thuật đào tạo sáng tạo đang được phát triển cho SLM, đặc biệt là việc sử dụng các mô hình lớn để tạo ra dữ liệu đào tạo đa dạng, cụ thể cho từng lĩnh vực.
• SLM cũng đang phát triển thành các hệ thống đa phương thức với khả năng lưu trữ và suy luận cục bộ.
• Các mô hình nguồn mở như Phi-3.5 cho thấy sức mạnh tiềm năng của các mô hình nhỏ hơn này. Ngoài ra, các tiến bộ như lượng tử hóa mô hình đang mở rộng phạm vi các tùy chọn lưu trữ, làm cho SLM dễ tiếp cận hơn cho nhiều ứng dụng khác nhau trong khi vẫn duy trì hiệu suất cao.
• SLM được đào tạo để thay đổi hành vi của mô hình thay vì trang bị cho chúng kiến thức cụ thể hoặc làm cho mô hình trở nên nặng về kiến thức.
• LLM và SLM có thể hợp tác để cân bằng hiệu suất và hiệu quả - LLM quản lý các tác vụ phức tạp trong khi SLM xử lý các tác vụ tập trung hơn, hiệu quả về tài nguyên.
• Tuy nhiên, SLM thường vượt trội hơn LLM trong môi trường hạn chế hoặc các tác vụ đòi hỏi khả năng diễn giải cao do tính đơn giản, chi phí thấp hơn và khả năng tiếp cận của chúng. Lựa chọn phụ thuộc vào nhu cầu cụ thể của tác vụ, với SLM xuất sắc trong các ứng dụng chuyên biệt.
• Sự hợp tác giữa LLM và các mô hình nhỏ hơn có thể cân bằng sức mạnh và hiệu quả, dẫn đến các hệ thống hiệu quả về tài nguyên, có khả năng mở rộng, dễ diễn giải và tiết kiệm chi phí, đồng thời vẫn duy trì hiệu suất cao và tính linh hoạt.
• Các mô hình nhỏ hơn mang lại những lợi thế độc đáo như tính đơn giản, chi phí thấp hơn và khả năng diễn giải tốt hơn, khiến chúng phù hợp với các thị trường ngách.
• LLM đã thể hiện hiệu suất xuất sắc trong nhiều tác vụ xử lý ngôn ngữ tự nhiên nhờ số lượng tham số lớn và được đào tạo trên các bộ dữ liệu đa dạng. Mặc dù các mô hình nhỏ hơn thường hoạt động ở mức thấp hơn, chúng vẫn có thể đạt được kết quả tương tự khi được cải thiện bằng các kỹ thuật như chưng cất kiến thức.
• LLM có tính linh hoạt cao, có thể xử lý nhiều loại tác vụ khác nhau chỉ với một vài ví dụ đào tạo. Ngược lại, các mô hình nhỏ hơn thường chuyên biệt hơn và các nghiên cứu cho thấy việc tinh chỉnh chúng trên các bộ dữ liệu dành riêng cho lĩnh vực đôi khi có thể dẫn đến hiệu suất tốt hơn so với LLM chung trên các tác vụ cụ thể.
• LLM đòi hỏi tài nguyên tính toán đáng kể cho cả đào tạo và suy luận, dẫn đến chi phí cao và độ trễ lớn, khiến chúng ít phù hợp hơn cho các ứng dụng thời gian thực, chẳng hạn như truy xuất thông tin, hoặc trong môi trường hạn chế tài nguyên như các thiết bị biên. Ngược lại, các mô hình nhỏ hơn yêu cầu ít dữ liệu đào tạo và sức mạnh tính toán hơn, cung cấp hiệu suất cạnh tranh trong khi giảm đáng kể yêu cầu tài nguyên.
• Các mô hình nhỏ hơn, đơn giản hơn thường minh bạch hơn và dễ diễn giải hơn so với các mô hình lớn hơn, phức tạp hơn. Trong các lĩnh vực như chăm sóc sức khỏe, tài chính và luật pháp, các mô hình nhỏ hơn thường được ưa chuộng vì quyết định của chúng cần được hiểu dễ dàng bởi những người không phải chuyên gia, chẳng hạn như bác sĩ hoặc nhà phân tích tài chính.
📌 Mô hình ngôn ngữ nhỏ (SLM) đóng vai trò quan trọng trong kỷ nguyên AI, cung cấp hiệu quả và khả năng diễn giải cao. Chúng có thể hợp tác với mô hình lớn (LLM) để tối ưu hóa hiệu suất, đồng thời vượt trội trong các môi trường hạn chế và ứng dụng chuyên biệt. SLM mang lại lợi thế về chi phí, tính đơn giản và khả năng tiếp cận, phù hợp cho nhiều lĩnh vực khác nhau.
https://cobusgreyling.substack.com/p/the-role-of-small-models-in-the-llm